Data-flo Docs
  • About Data-flo
    • Data-flo Major Update in April 2024
      • Migrating your workflows into the latest version of Data-flo
        • Streamlined adaptors
        • Deprecated adaptors
        • New and retained adaptors
    • Change Log
    • Privacy and Terms of Service
    • Open source software used by Data-flo
  • Data-flo Basics
    • Account
    • Navigation
    • Terminology
    • Interface Icons
    • Data-flo's building blocks: Adaptors
      • Using adaptors to import data
      • Using adaptors to process data
      • Using adaptors to export data
    • Combining adaptors to create workflows
      • Creating a workflow
        • Building a workflow from scratch
        • Cloning an existing workflow
        • Importing a .dataflo file
      • Testing your workflows
      • Running your workflows
      • Accessing your workflows
  • Adaptor reference guide
    • add-column
    • add-jittering
    • add-value-to-dictionary
    • aggregate-rows
    • append-datatables
    • append-lists
    • append-to-list
    • apply-force-directed-layout
    • calculate-column
    • calculate-time-difference
    • change-column-case
    • compare-columns
    • concatenate-columns
    • concatenate-text
    • convert-date-to-text
    • convert-list-to-datatable
    • convert-text-to-datatable
    • convert-text-to-list
    • create-dictionary-from-datatable
    • create-google-drive-folder
    • create-graph-from-datatable
    • create-graph-from-dot
    • create-list-from-datatable
    • create-text-from-template
    • duplicate-column
    • export-file-to-google-drive
    • export-file-to-smb-share
    • export-graph-to-dot-file
    • export-text-to-file
    • export-to-csv-file
    • export-to-dbf-file
    • export-to-google-sheet
    • export-to-microreact-project
    • export-to-sqlite-file
    • filter-list
    • filter-rows
    • find-value-in-dictionary
    • find-value-in-list
    • format-date-column
    • format-time-column
    • geocoding
    • import-file-from-dropbox
    • import-file-from-figshare
    • import-file-from-google-drive
    • import-file-from-http-request
    • import-file-from-s3
    • import-file-from-smb-share
    • import-file-from-url
    • import-from-csv-file
    • import-from-dbf-file
    • import-from-epicollect-project
    • import-from-excel-file
    • import-from-google-sheet
    • import-from-json-file
    • import-from-microreact-project
    • import-from-mysql
    • import-from-oracle
    • import-from-postgres
    • import-from-spreadsheet-file
    • import-from-sql-server
    • import-from-sqlite
    • import-list-from-text-file
    • import-text-from-file
    • join-datatables
    • list-datatable-columns
    • list-newick-leaf-labels
    • map-column-values
    • prepend-to-list
    • query-datatable
    • remove-columns
    • remove-duplicate-list-values
    • remove-duplicate-rows
    • rename-columns
    • rename-newick-leaf-labels
    • replace-blank-values
    • replace-values-in-columns
    • replace-values-in-list
    • replace-values-in-text
    • reshape-long-to-wide
    • reshape-wide-to-long
    • reverse-geocoding
    • run-openai-model
    • run-replicate-model
    • run-workflow
    • sample-datatable
    • select-columns
    • select-list-values
    • select-rows
    • send-email-message
    • sort-datatable
    • sort-list
    • split-column
    • split-geographical-coordinates
    • split-list
    • summarise-datatable
    • transform-columns
    • workflow-repeater
  • Applying Data-flo
    • Basics in Minutes!
      • Quick Workflow
        • Step 1: Configure a solo adapter to view data.
        • Step 2: Add and link a second adaptor.
        • Step 3: Add a value.
        • Step 4: Complete the workflow.
        • Step 5: Run the workflow.
        • Step 6: Share the workflow.
  • API
    • Data-flo API
    • API Access Tokens
  • Support
    • Contact and Feedback
    • Private Installations
Powered by GitBook
On this page
  • Description
  • Inputs
  • Outputs
  • Examples
  • Example 1: Default behaviour.
  • Example 2: Date reformatted in new column.
  • Use Cases
  1. Adaptor reference guide

format-date-column

Previousfind-value-in-listNextformat-time-column

Last updated 1 year ago

Description

format-date-column adaptor formats date/time values in a datatable column.

Define the format of a date/time column and either replace the original column values or add a new column with the reformatted date-time.

Inputs

data Type: datatable Required: Yes The datatable containing the column to be formatted.

original column name Type: text Required: Yes The name of the column containing the date/time values.

original format Type: text Required: No The format tokens, of the original values, based on . If unspecified, defaults to ISO 8601 date/time.

original locale Type: text Required: No The to be used when parsing the original values. If unspecified, locale defaults to en-US.

new format Type: text Required: No The format tokens, of the new values, based on . If unspecified, defaults to ISO 8601 date/time.

new locale Type: text Required: No The to be used when formatting the new values. If unspecified, locale defaults to en-US.

new column name ⁃ Type: text ⁃ Required: No The name of the column to which the new values will be added. If unspecified, the new values will be added to the original column (specified by original column name), overwriting the original values.

Outputs

data Type: datatable A datatable with formatted values.

Examples

Example 1: Default behaviour.

Inputs:

data:

id
code
name
date

1

GB

United Kingdom

2007-01-29T00:00:00+01:00

2

TR

Turkey

2008-02-29T00:00:00+01:00

3

US

United States

2009-03-29T00:00:00+01:00

4

IND

India

2010-04-29T00:00:00+01:00

original column name: date

original format: null (empty)

original locale: null (empty)

new format: dd MMM yyyy

new locale: name

new column name: null (empty)

Outputs:

data:

id
code
name
date

1

GB

United Kingdom

28 Jan 2007

2

TR

Turkey

28 Jun 2017

3

US

United States

18 Jan 2005

4

IND

India

10 May 2012

-> Overwrote the date column with a date in dd MMM yyyy format

Example 2: Date reformatted in new column.

Inputs:

data:

id
code
name
date

1

GB

United Kingdom

2007-01-29T00:00:00+01:00

2

TR

Turkey

2008-02-29T00:00:00+01:00

3

US

United States

2009-03-29T00:00:00+01:00

4

IND

India

2010-04-29T00:00:00+01:00

original column name: date

original format: null (empty)

original locale: null (empty)

new format: dd MMM yyyy

new locale: name

new column name: new date

Outputs:

data:

id
code
name
date
new date

1

GB

United Kingdom

2007-01-29T00:00:00+01:00

28 Jan 2007

2

TR

Turkey

2017-06-29T00:00:00+01:00

28 Jun 2017

3

US

United States

2005-01-19T00:00:00+01:00

18 Jan 2005

4

IND

India

2012-05-11T00:00:00+01:00

10 May 2012

-> Created a new date column with the date in dd MMM yyyy format, derived from date column

Use Cases

  • Standardize date/time formats across different data sources where date/time data are stored in different formats

  • Simplify date-time into simple date

  • Reformat date to align with a new target audience

  • Reformat date to a format more useful for visualisation

Unicode Technical Standard #35
language locale
Unicode Technical Standard #35
language locale