Data-flo Docs
  • About Data-flo
    • Data-flo Major Update in April 2024
      • Migrating your workflows into the latest version of Data-flo
        • Streamlined adaptors
        • Deprecated adaptors
        • New and retained adaptors
    • Change Log
    • Privacy and Terms of Service
    • Open source software used by Data-flo
  • Data-flo Basics
    • Account
    • Navigation
    • Terminology
    • Interface Icons
    • Data-flo's building blocks: Adaptors
      • Using adaptors to import data
      • Using adaptors to process data
      • Using adaptors to export data
    • Combining adaptors to create workflows
      • Creating a workflow
        • Building a workflow from scratch
        • Cloning an existing workflow
        • Importing a .dataflo file
      • Testing your workflows
      • Running your workflows
      • Accessing your workflows
  • Adaptor reference guide
    • add-column
    • add-jittering
    • add-value-to-dictionary
    • aggregate-rows
    • append-datatables
    • append-lists
    • append-to-list
    • apply-force-directed-layout
    • calculate-column
    • calculate-time-difference
    • change-column-case
    • compare-columns
    • concatenate-columns
    • concatenate-text
    • convert-date-to-text
    • convert-list-to-datatable
    • convert-text-to-datatable
    • convert-text-to-list
    • create-dictionary-from-datatable
    • create-google-drive-folder
    • create-graph-from-datatable
    • create-graph-from-dot
    • create-list-from-datatable
    • create-text-from-template
    • duplicate-column
    • export-file-to-google-drive
    • export-file-to-smb-share
    • export-graph-to-dot-file
    • export-text-to-file
    • export-to-csv-file
    • export-to-dbf-file
    • export-to-google-sheet
    • export-to-microreact-project
    • export-to-sqlite-file
    • filter-list
    • filter-rows
    • find-value-in-dictionary
    • find-value-in-list
    • format-date-column
    • format-time-column
    • geocoding
    • import-file-from-dropbox
    • import-file-from-figshare
    • import-file-from-google-drive
    • import-file-from-http-request
    • import-file-from-s3
    • import-file-from-smb-share
    • import-file-from-url
    • import-from-csv-file
    • import-from-dbf-file
    • import-from-epicollect-project
    • import-from-excel-file
    • import-from-google-sheet
    • import-from-json-file
    • import-from-microreact-project
    • import-from-mysql
    • import-from-oracle
    • import-from-postgres
    • import-from-spreadsheet-file
    • import-from-sql-server
    • import-from-sqlite
    • import-list-from-text-file
    • import-text-from-file
    • join-datatables
    • list-datatable-columns
    • list-newick-leaf-labels
    • map-column-values
    • prepend-to-list
    • query-datatable
    • remove-columns
    • remove-duplicate-list-values
    • remove-duplicate-rows
    • rename-columns
    • rename-newick-leaf-labels
    • replace-blank-values
    • replace-values-in-columns
    • replace-values-in-list
    • replace-values-in-text
    • reshape-long-to-wide
    • reshape-wide-to-long
    • reverse-geocoding
    • run-openai-model
    • run-replicate-model
    • run-workflow
    • sample-datatable
    • select-columns
    • select-list-values
    • select-rows
    • send-email-message
    • sort-datatable
    • sort-list
    • split-column
    • split-geographical-coordinates
    • split-list
    • summarise-datatable
    • transform-columns
    • workflow-repeater
  • Applying Data-flo
    • Basics in Minutes!
      • Quick Workflow
        • Step 1: Configure a solo adapter to view data.
        • Step 2: Add and link a second adaptor.
        • Step 3: Add a value.
        • Step 4: Complete the workflow.
        • Step 5: Run the workflow.
        • Step 6: Share the workflow.
  • API
    • Data-flo API
    • API Access Tokens
  • Support
    • Contact and Feedback
    • Private Installations
Powered by GitBook
On this page
  • Description
  • Inputs
  • Outputs
  • Examples
  • Example 1: Default behaviour.
  • Example 2: Reshape with static columns.
  • Example 3: Reshape with specific key column name and value column name.
  1. Adaptor reference guide

reshape-wide-to-long

Description

reshape-wide-to-long adaptor transforms a datatable to a two-column datatable in which one column contains the column names of the original datatable and the second column is the respective value from each row.

Inputs

data Type: datatable Required: Yes The datatable in wide format.

static columns Type: list Required: No The list of columns which will not be reshaped. If unspecified, all columns will be reshaped

key column name Type: text Required: No The name of the column to which keys are added. If unspecified, defaults to key.

value column name Type: text Required: No The name of the column to which values are added. If unspecified, defaults to value.

Outputs

data Type: datatable A datatable in long format.

Examples

Example 1: Default behaviour.

Inputs:

data:

id
code
country

1

GB

United Kingdom

2

TR

Turkey

3

US

United States

static columns: null (empty)

key column name: null (empty)

value column name: null (empty)

Outputs:

data:

key
value

id

1

code

GB

country

United Kingdom

id

2

code

TR

country

Turkey

id

3

code

US

country

United States

-> Transformed all the columns in the datatable, from wide to long, using the default key and value as the column names

Example 2: Reshape with static columns.

Inputs:

data:

id
code
country

1

GB

United Kingdom

2

TR

Turkey

3

US

United States

static columns:

  1. country

key column name: null (empty)

value column name: null (empty)

Outputs:

data:

key
value

id

1

code

GB

id

2

code

TR

id

3

code

US

-> Transformed the columns id and code in the datatable, from wide to long, using the default key and value as the column names. The country column was not reshaped.

Example 3: Reshape with specific key column name and value column name.

Inputs:

data:

id
code
country

1

GB

United Kingdom

2

TR

Turkey

3

US

United States

static columns:

  1. country

key column name: name

value column name: result

Outputs:

data:

name
result

id

1

code

GB

id

2

code

TR

id

3

code

US

-> Transformed the columns id and code in the datatable, from wide to long, using the name as key column name and result as the value column name.

Previousreshape-long-to-wideNextreverse-geocoding

Last updated 1 year ago