select-columns

Description

select-columns adaptor selects a list of columns from a datatable in a specified order.

Columns can be selected based on a list of columns, text string matching, or a regular expression. These methods can be combined, so a list of columns can be supplied in addition to a regular expression to select additional columns.

Inputs

data Type: datatable Required: Yes The datatable containing columns to be selected.

column names Type: list Required: No The list of columns to be included in the specified order.

pattern Type: text Required: No Specifies the pattern (a text or a regular expression) to select columns whose name matches that pattern. Matching columns will be added after any columns specified in column names, and in the order in which they appear in the original datatable. The pattern is treated as a regular expression if it begins and ends with / (e.g. /.*/).

Outputs

data Type: datatable A datatable with the selected columns.

Examples

Example 1: Default behaviour.

Inputs:

  • data:

    Year
    Month
    Sales (USD)
    Sales (GBP)
    Sales (EUR)

    2020

    Jan

    1458

    1156

    1345

    2020

    Feb

    9874

    7835

    9110

    2020

    Mar

    4562

    3601

    4173

    2020

    Apr

    3654

    2885

    3342

  • column names:

    1. Month

    2. Sales (GBP)

Outputs:

  • data:

    Month
    Sales (GBP)

    Jan

    1156

    Feb

    7835

    Mar

    3601

    Apr

    2885

Example 2: Selecting columns using a regular expression.

In this example, we use the regular expression /^Sales .*/ as a value for the pattern input to select columns which start with Sales.

Inputs:

  • data:

    Year
    Month
    Sales (USD)
    Sales (GBP)
    Sales (EUR)

    2020

    Jan

    1458

    1156

    1345

    2020

    Feb

    9874

    7835

    9110

    2020

    Mar

    4562

    3601

    4173

    2020

    Apr

    3654

    2885

    3342

  • column names:

    1. Month

  • pattern: /Sales .*/

Outputs:

  • data:

    Month
    Sales (USD)
    Sales (GBP)
    Sales (EUR)

    Jan

    1458

    1156

    1345

    Feb

    9874

    7835

    9110

    Mar

    4562

    3601

    4173

    Apr

    3654

    2885

    3342

Use Cases

  • Remove duplicate columns after joining multiple datatables.

  • Reorder columns before exporting.

Last updated